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1 Abstract

This article presents a means of boosting the transferability of adversarial attacks in deep neu-
ral networks. The research includes background, methodologies, and outcomes, encompassing
single-attack approaches and ensemble attack strategies such as I-FGSM and MI-FGSM. We delve
into the notion of retraining using adversarial examples. Our contributions reveal the limitations
of single-attack methods regarding transferability and demonstrate the superiority of ensemble at-
tack methods. We highlight how algorithm selection impacts attack effectiveness and how model
variations enhance transferability. Through these investigations, we offer valuable insights for
bolstering deep neural networks’ adversarial robustness while acknowledging existing constraints.

2 Introduction

With the development of deep neural networks (DNNs), remarkable success has been achieved
in various fields, including face recognition, autonomous driving, and speaker verification. Mean-
while, more and more attention has been paid to DNN-related security issues. Goodfellow et al. [1]
and Szegedy et al. [2] found that DNNs are vulnerable to adversarial examples, carefully crafted
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perturbations to input data designed to fool DNNs into making incorrect predictions or classifica-
tions. Adversarial attacks pose security and reliability threats to DNN-based systems, especially in
safety-critical applications such as autonomous driving, face recognition, and medical diagnosis.

An adversarial example refers to a sample created by introducing imperceptible perturbations,
either visually imperceptible or slightly noticeable after processing, to an original data point in a
dataset. Such examples can cause well-trained models to produce classification outputs with high
confidence that differ from the classification of the original sample.

Some people have done some adversarial example research already. Szegedy [2] highlighted
how minor disturbances can lead neural networks to misclassify images. Goodfellow [1] intro-
duced the gradient-based method for generating adversarial samples, while Madry [9] further re-
fined the approach. Liu et al. [3] proposed ensemble-based methods for Clarifai.com. Lin et al. [4]
introduced NI-FGSM and SIM methods to enhance adversarial example transferability. Naseer
et al. [5] presented a novel generative approach for transferable adversarial perturbations. Zhao
et al. [6] devised practices for evaluating transfer adversarial attacks, categorizing attacks, and
evaluating their transferability and stealthiness.

3 Team work

Name Roles Responsibilities

XU XIAOTANG Leader
1. Project overall organization 2. Learning routes
design 3.Experimentation 4. Results analysis
5.Algorithm optimization

WEI KANGXIN Member
1. Papers reading 2. Codes comprehension
3.Algorithms summarization

XU JIN Member
1. Papers reading 2. Article proofreading
3. Codes comprehension 4. Flowcharting

ZHANG JIAYUAN Member
1. Papers reading 2. Experimentation 3.Results analysis
4. Algorithm optimization 5. Heatmaps Generation

ZHU FANGYI Member
1. Papers reading 2. Proposal Presentation
3. Codes comprehension 4. Algorithm optimization

4 Methods and results

single-attack method Initially, we employed a single-attack approach; the Schematic diagram
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of the single-attack principle is shown in Figure 1. We selected ImageNet as the source dataset
and used a single model’s [7–9] logits to compute the loss function. Different attack algorithms
[4, 10–12] were applied to calculate perturbations, which were then added to the original input
samples to generate adversarial examples that effectively attack the target model. We assessed
the attack’s transferability by comparing the model’s predicted results on the original samples and
adversarial examples. We adjusted the perturbations, attack parameters, and algorithms to enhance
the attack’s transferability.

Figure 1: Schematic diagram of the single attack principle

These results represent the highest success rate obtained from iterating the attack a hundred
times, as shown in Figure 2. Notably, using a single model for the attack yields relatively low
transferability (success rate), with a maximum success rate of at most 80%. Consequently, we
began considering better approaches to explore integrated adversarial attacks.

4.1 Ensemble attack methods

In our study, we delve into ensemble attacks, aiming to disrupt the classification performance
of DNNs by combining multiple models. Our primary focus is understanding the generation of
adversarial samples and assessing the transferability of adversarial attacks across different models.

When generating perturbations, we first employ the algorithm of I-FGSM. The Iterative Fast
Gradient Sign Method (I-FGSM) [13] is a prominent technique used in adversarial attacks to per-
turb DNNs by introducing imperceptible changes into input data. It operates by iteratively mod-
ifying the input features based on the gradient information of the loss function concerning the
input. I-FGSM belongs to the family of white-box attacks, where the attacker can access the target
model’s architecture and parameters.

As shown in Figure 3, we select an image from the dataset and feed it into various commonly
used DNN models for classification. Each model produces a loss value, which we aggregate by
summing the partial derivatives of the loss function concerning the clean samples, assigning equal
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Figure 2: Single attack results

Figure 3: Application of the I-FGSM Algorithm in Ensemble Attack Mode Diagram
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weights. This process creates adversarial samples designed to perturb the models’ classification
performance.

Our evaluation strategy involves inputting the generated adversarial samples into different mod-
els. A successful attack occurs if a model produces labels different from the original ones, indi-
cating a misclassification of the image. We define the ratio of successfully deceived models to the
total number of dataset images as the success rate. A higher success rate suggests better transfer-
ability of the attack method. Next, we analyze the attack success rates across various methods on
different datasets.

The obtained results are presented in a heatmap, where colors represent the success rates of
the attacks. To analyze the effectiveness of the ensemble attack, we initially exclude the res152
model, generate adversarial samples using the remaining three models, and then proceed to attack
the res152 model. Notably, when targeting the res152 model, the success rate is markedly lower
than the other models. Similar outcomes are observed when excluding the effects of the other
models. Based on these findings, the transferability of the I-FGSM algorithm could be better.

4.2 MI-FGSM: An improvement of the I-FGSM algorithm

Since the transferability of the I-FGSM [10] algorithm is limited, we have employed the MI-
FGSM algorithm to enhance it.

So What is the difference? The M introduces the concept of ”Momentum” during each pertur-
bation. Momentum can be understood as the accumulation of gradient information, from the loss
function in previous iterations, much like inertia.

Figure 4: Inertia in the physical sense
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In every iteration, it considers the current gradient and accumulated gradients from the past.
This results in smoother adversarial perturbations, as it considers a richer history of information
with each update. We use the variable ”noise momentum” to perturb the input image x, which com-
bines the momentum coefficient and the ensemble noise. After each perturbation, the momentum
coefficient is updated. The specific calculation process is as follows:

1. Compute the gradients of the loss functions of multiple models concerning the input image
x:dLi

dx
for each model i

2. Calculate the average of the gradients of multiple models to form the disturbance term noise
ensemble

noise ensemble =
1

N

∑N
i=1

dLi

dx

3. Use the momentum coefficient β and the disturbance term noise ensemble to calculate noise
momentum

noise momentum = β •momentum+
noise ensemble

mean(|noise ensemble|)

Among them, β is the momentum coefficient, and momentum is the momentum term of the
last iteration.

4. Multiply the noise momentum with the step size α, then take its sign and add it to the current
input image x to produce adversarial samples

x = x+ α • sign(noise moment)

In this process, x represents the current input image, and each model’s gradient of the loss
function is calculated, averaged, and then combined with the momentum term to generate adver-
sarial samples. This process is repeated over multiple iterations to generate increasingly disruptive
adversarial samples that fool the model’s predictions.

To better explain the algorithm, here is a metaphor: Imagine you are a mountain biker trying
to pedal uphill on a slope called ”loss function.” I-FGSM is like adjusting your pedaling strength
based only on how steep the slope looks in front of you. However, with MI-FGSM, you gather the
energy you gained from your previous uphill efforts, which helps you with each pedal push. This
way, you can climb more steadily and smoothly, as it considers both the current situation and your
past progress.

After conducting several attacks similar to I-FGSM, we were pleasantly surprised to observe a
significant increase.

In the attack, success rates against both black-box and defense models. Moreover, the success
rate in white-box attacks nearly approached 100%! This indicates that the adversarial samples
generated using the MI-FGSM algorithm exhibit strong transferability.
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Figure 5: The superiority of MI-FGSM

Figure 6: Ensemble Attack results using adversarial examples generated by the Ens-MI-FGSM
algorithm
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4.3 Further Thinking

After completing all the work mentioned, we took a step further into boosting adversarial
example transferability.

Figure 7: Algorithms flowchart on retraining using adversarial examples

In Figure 7, we describe our algorithm’s flow. We use adversarial examples from previous
attacks as inputs (denoted as x) and clean examples labels as classification targets (denoted as y).
Using our improved method above-mentioned, Ens-MI-FGSM, we circulated this process after
generating additional adversarial examples and evaluated their attack success rate against seven
different models.

The result of their transferability is seen in Figure 8. When training with adversarial examples
generated from a one-time attack, we found this approach led to further improvements upon the
already promising results.

Figure 9, shows three heatmaps reflecting different methods we have used. These three columns
within the red box represent the results of our adversarial examples attacking defense models:
[14]Inc-v3ens3 Inc-v3ens4 IncRes-v2ens.Through analysis, we can find that the results using pre-
vious methods we used could be better, with only a few slightly over 50%. However, using an
adversarial example retraining approach, only three times did the success rate against these de-
fense models improve obviously, and some reached 57.4%.

The flowchart Figure 10. represents the idea of adversarial training. Models trained together
with adversarial samples are added, allowing the model to learn the features of the clean examples
and the adversarial ones, thus changing the model’s decision boundary, and then improving the
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Figure 8: The superiority of retraining-Ens-MI-FGSM

Figure 9: Comparison results of Ens-I-FGSM, Ens-MI-FGSM, and Retraining-Ens-MI-FGSM
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Figure 10: Flowchart of how defense model obtained through adversarial training

robustness of the model against attacks.
To find the underlying reason behind the improvement of the retraining approach, we speculate

there may be similarities between this approach and adversarial training’s changes to the model’s
decision boundary.

Figure 11: Adversarial examples retraining using adversarial examples

However, the approach we use has its limitations, or rather, the limitation is present in all
approaches that enhance transferability. Specifically, methods with strong transferability tend to
produce pictures with poorer stealthiness, which means higher visibility, illustrated in Figure 11.
From left to right, the perturbations become increasingly evident. This is also one of the directions
we can focus on in the future: how to balance transferability and stealthiness.
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5 Contributions and Limitations

5.1 Contributions

This study found that ensemble attack methods outperform individual attack methods regard-
ing black-box transferability. Ensemble attacks enhance the portability of adversarial examples by
collecting the average gradient directions from multiple models as the update direction for gradient
ascent. Neural networks with similar input-output relationships often have similar decision bound-
aries, thus exhibiting some similarity. By utilizing more models, we can better approximate this
common direction. Furthermore, experimental results demonstrate that greater diversity among the
models used in ensemble attacks leads to better transferability of generated adversarial examples.

Additionally, the choice of attack algorithm also impacts the attack’s effectiveness. Under the
premise of using the same models for ensemble attacks, employing superior attack algorithms can
improve the transferability of adversarial samples.

Our work thoroughly investigates the factors influencing the effectiveness of ensemble attacks.
In future work, we aim to understand better the inherent differences between neural network mod-
els with similar input-output relationships and train more advanced ensemble attack models.

5.2 Limitations

In our ensemble attack experiment, we only utilized four models for participation. However,
the selection of models needed to be improved, leading to poor compatibility among the models
used in the experiment. As a result, we could not fully explore the impact of differences between
models on transferability. Furthermore, the addition of more models may enhance transferabil-
ity in certain ways. However, due to current GPU technology limitations, we could not conduct
large-scale training. These limitations are crucial to consider in the context of adversarial sample
experiment-related papers.
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