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1 Abstract

In recent years, the rampant spread of diseases has led to considerable impacts on human
society. Limiting such spread requires the formulation of quantitative studies to understand the
dynamics of infection and to study the effect of preventative and counteractive action. In 1911,
scientists constructed differential equations to study the spread of malaria and found that at a
critical mosquito population level the spread of the disease would be limited. This also became
the basis for the later dynamics of infectious diseases. This research aims to dynamically analyze
the spread of the virus by establishing a mathematical model and assigning specific values to the
influencing factors to discuss the relationship between the person who infects others and the infected
person. The ultimate goal is that the spread of the disease can be effectively suppressed in a specific
proportion of people. Keywords: dynamics of infectious diseases, infected-uninfected relationship.

2 Introduction

Throughout human history, infectious diseases, such as SARS, H5N1, and Ebola, have occurred
frequently in various periods. With the emergence of COVID-19 in December 2019, there has
been greater emphasis on understanding global epidemics since they have such a detrimental effect
on human health and lives. As of July 26, 2023, the World Health Organization (WHO) has
reported more than 760 million confirmed cases of COVID-19, with 6.9 million deaths in total
(https://covid19.who.int/).

In order to limit the spread of infectious diseases and forecast the evolution of an epidemic
outbreak, it is essential to conduct theoretical research and use a mathematical model. Such a
model can accurately reveal the spread of infectious diseases among populations. Indeed, in the
dynamics of infectious diseases, mathematical models are established based on the characteristics
of population migration and transmission mechanisms. By conducting quantitative analysis and
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numerical calculation of the model, the dissemination process and patterns of infectious diseases
can be simulated, providing a decision-making basis for intervention policies such as vaccination
[11][14].

3 Literature Review

1766 marks the beginning of mathematical modeling in epidemiology, when D. Bernoulli [2]
developed the spread of smallpox using a mathematical model which is also considered the pro-
totype of dynamics models of infectious disease. In 1911, Ross et al. [10] constructed differential
equations to study the spread of malaria. A crucial discovery is that if the number of mosquitoes
fell below a critical value, malaria would not continue to spread: this formed the earliest concept
of basic reproductive numbers. In 1927, Kermack and McKendrick [6] proposed the famous SIR
compartmental model and followed this by constructing the SIS compartmental model in 1932. The
threshold theorem, one of the key achievements in epidemiology, whereby a noise-containing quan-
tum computer can still accurately simulate an ideal quantum computer when the noise in a single
quantum gate is below a specific threshold and the noise satisfies physically specific reasonable
assumptions, also derives from the work of Kermack and McKendrick.

In early compartmental models, the population is assumed to be homogeneously mixed, where
each individual has a chance to contact any other. In this unrealistic assumption, the effect of
local connections is neglected. Recently, complex networks have been used in dynamical epidemic
modeling [5] [8] [3]. Indeed, scholars have made various improvements based on the classic com-
partmental model. In 2001, Pastor et al. [9] established the first dynamic SIS model of complex
networks to describe the spread of computer viruses. In 2002, Moreno et al. [7] extended the SIS
model to the SIR model in heterogeneous networks. In [1] [13], the authors analyzed discrete-time
models in detail. Considering that humans tend to protect themselves by avoiding contact with
infectious diseases, Gross et al. [4] extended the SIS epidemic model to adaptive networks in 2006.
Some scholars have also investigated the dynamic characteristics and network topology properties
of epidemic models [12].

4 Aim

Here, we will consider a SIS (susceptible–infected–susceptible) model in a complex network,
where the nodes represent the individuals and the links represent the relationships between the
individuals. Firstly, we establish a mathematical model to simulate the relationship between ordi-
nary people and patients, and then compare the images of discrete time and continuous time. As
an extension, we use Markov chains to discuss randomness in mathematical models and present the
final data through charts. In addition, we use a well-known mathematical method, a logistic map,
which is used to study demographic models. This can help us visualize the chaotic phenomena that
occur when the rate of change changes through images.

5 SIS model

In this research, our group members used the Susceptible-Infected-Susceptible (SIS) approach
to show epidemics in networks. In this model, a person only can be in a susceptible(S) state or an
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infected(I) state. A susceptible person has little immunity and is more likely to be infected after
contact with an infected person. When an infected person gets the disease they may be cured by
medical treatment later, but they will never get immunity against this disease.

Now, we need to define some concepts by using some alphabetical letters to make them shorter
and clearer to read. λ is the number of effective contacts per patient per day µ is the proportion
of patients who recover in the total number of patients. N is the total number of people S refers
to the proportion of susceptible individuals in the total population and i refers to the proportion
of infected individuals in the total population. σ refers to λ/µ. In this model, we assume that all
people are alive and the total population N is a constant, which means nobody will immigrate or
emigrate to or from from this place. Here are two figures which show two different value of σ.

σ ≤ 1 σ ≥ 1

The process below is a mathematical deduction written by our group to prove the graph above.

di
dt

= λis− µi

because s+ i = 1,
= λi(1− i)− µi

= λi− λi2 − µi

= (λ− µ)i− λi2

i−2i′ − (λ− µ)i−1 = −λ

let i−1 = u,

i−2 ∗ i′ = −du
dt

− du
dt

− (λ− µ)u = −λ
du
dt

+ (λ− µ)u = λ

According to F irst Order Linear Differential Equation,

u = e−
∫
(λ−µ)dt[

∫
λe

∫
(λ−µ)dtdt+ c]

u = e−(λ−µ)t[ λ
λ−µ

e(λ−µ)t + c]

u = λ
λ−µ

+ ce−(λ−µ)t

i−1 = λ
λ−µ

+ ce−(λ−µ)t
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i = [ λ
λ−µ

+ ce−(λ−µ)t]−1

let i(0) = b,

b = [ λ
λ−µ

+ c]−1

c = 1
b
− λ

λ−µ

i = [ λ
λ−µ

+ ( 1
b
− λ

λ−µ
)e−(λ−µ)t]−1

i = [ 1
1− 1

σ

+ ( 1
i0
− 1

1− 1
σ

eλ(1−
1
σ )t]−1

When σ tends to infinity, the result of i tends to a certain limit but when � tends to 0, the result
of i tends to 0, which means that all the people are recovered and will not be reinfected because
the population of infected is 0.

6 Markov chain

A Markov chain is used to understand stochastic processes in probability theory and mathe-
matical statistics. The Markov property is when a Stochastic process takes into account the present
state and all past states, and the conditional probability distribution of its future state only depends
on the current state. For example, if we want to predict future weather through Markov properties,
then tomorrow’s weather can only be predicted based on today’s weather. We can also apply the
Markov property to the SIS model, indicating that the number of infected and susceptible people on
the next day is only related to the number of people on the previous day. In this way, we can list a
matrix to express the probability of transition between states S and I. After multiple operations of
multiplication, the infected and susceptible population will converge on a fixed proportion. Based
on the results obtained, we can draw a graph and finally come to a conclusion.

7 Logistic Map

A logistic map is a quadratic polynomial map, which is a classic example of chaotic phenom-
ena generated by simple nonlinear equations. This mapping is famous due to a paper published by
biologist Robert May in 1976 which covered a demographic model. The mathematical expression
can be written as

xn+1 = rxn(1− xn)
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and by discussing the rate of change r and repeatedly calculating it, we can obtain different stable
values of the infected to uninfected population ratio. After r exceeds 3.6, the stable value will no
longer appear regularly and chaotic phenomena will occur, as shown in the following image.
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